D$_2$O Isotope Effects on Chemical Reactions under CANDU Operating Conditions

IAPWS Canadian National Committee Workshop
May 11 & 12, 2009

Peter Tremaine
Department of Chemistry
University of Guelph
CANDU Nuclear Power Plant
Magnetite Solubility in Nuclear Reactor Primary Coolant Circuits

- An increase of 1 pH unit avoids in-core deposits
- Minimizes 60Co activity transport
- Impact on long-term feeder thinning?
- Behaviour in D$_2$O?
Magnetite Solubility

Aqueous Solution

\[\text{Fe}^{2+} \rightleftharpoons \text{FeOH}^{+} \rightleftharpoons \text{Fe(OH)}_{2}^{0} \rightleftharpoons \text{Fe(OH)}_{3}^{-} \]

Metal Oxide

\[\text{Fe}_3\text{O}_4 \]

Deuterium Isotope Effects at 25 °C

\[\Delta pK = \{ pK_a(D_2O) - pK_a(H_2O) \} \approx 0.45 \]

Laughton and Robertson in Cotzee and Ritchie, *Solute-Solvent Interactions* (Marcel Dekker, NY, 1969)
Equilibrium Constant as a Function of Temperature
The Relation to Standard Partial Molar Properties

\[\ln K_T = \ln K_{298} - \frac{1}{R} \left[\frac{1}{T} - \frac{1}{298} \right] \Delta H^o_{298} + \frac{1}{R} \left[\frac{\Delta C^o_p}{T} \right]_T + \frac{1}{RT} \left[\Delta C^o_p \right]_T - \frac{1}{RT} \left[\Delta V^o \right]_T - \frac{1}{RT} \int_1^p \Delta V^o \, dP \]

\[\left(\frac{\partial \Delta H^o}{\partial T} \right)_p = \Delta C^o_{p,R} \]

\[\left(\frac{\partial \ln K}{\partial P} \right)_T = -\frac{\Delta V^o_R}{RT} \]
Objectives

- Determine deuterium isotope effect for acids, bases
 - \(\Delta pK = \{ pK_a(D_2O) - pK_a(H_2O) \} \) at 250 & 300°C
 - Conductance
 - Colorimetric pH indicators
- \(D_2O \) isotope effect on \(V^\circ \) at 250 & 300°C
- Correlation for estimating \(\Delta pK \)
- Estimate \(\Delta pK \) for transition metal hydrolysis
- Correlate with glass electrode measurements at 25°C
Challenges with D$_2$O

- Define standard states:
 - “Aquamolal”: same mol faction as molality in H$_2$O
 - Molarity: same volume per solute as in H$_2$O
- PVT properties, viscosity known
- Debye-Huckel constants, dielectric constant
- Only known equilibrium constants at $t > 100^\circ$C:
 - Ionization constant K_D
 - Phosphate ionization constant D$_2$PO$_4^-$
Deuterium Isotope Effects on Ionization Constants From AC Conductance

Measuring *Differences* in the Degree of Ionization in \(\text{H}_2\text{O} \) and \(\text{D}_2\text{O} \) above 250 °C
Molar Conductance for Weak Acids

- HA ⇌ H⁺ + A⁻
 \((1 - \alpha)c\) \(\alpha c\) \(\alpha c\)

- \(\Lambda^{\text{exp}} = \alpha \lambda_{H^+} + \alpha \lambda_{A^-}\)

\[K_a = \frac{\alpha^2 \gamma \pm \sqrt{\alpha^2 \gamma^2 + 4 \alpha^2 c}}{1 - \alpha} \]

Experimental Design

\[\begin{align*}
\text{NaCl/H}_2\text{O} & \sim 10^{-4}\text{m} \\
\text{NaCl/D}_2\text{O} & \sim 10^{-4}\text{aqm} \\
\text{HA/H}_2\text{O} & \sim 10^{-4}\text{m} \\
\text{DA/D}_2\text{O} & \sim 10^{-4}\text{aqm}
\end{align*} \]
Acetic Acid Ionization

At 250 °C

HAc ⇌ H⁺ + Ac⁻ \[K_a (H_2O) = 1.42 \times 10^{-6} \]

\[\Delta pK_a = pK_{a_{D_2O}} - pK_{a_{H_2O}} = 6.26 - 5.85 = 0.41 \pm 0.13 \]

At 275 °C

HAc ⇌ H⁺ + Ac⁻ \[K_a (H_2O) = 8.02 \times 10^{-7} \]

\[\Delta pK_a = pK_{a_{D_2O}} - pK_{a_{H_2O}} = 6.45 - 6.09 = 0.36 \pm 0.12 \]

Ionization of D₂PO₄⁻: \[\Delta pK_a (250 °C) = 0.482; \quad \Delta pK_a (275 °C) = 0.477 \]

Mesmer and Herting J.Sol.Chem. 7,12,901-913 (1978)
Ionization Constants From Thermally Stable Colorimetric pH Indicators

Calibrating a pD Indicator for use in H₂O and D₂O above 250 °C
UV-Visible Spectroscopy
350 °C, 30 MPa

Hydrothermal Cell
- Sapphire windows
- Platinum body
- HPLC injection

Colorimetric pH Indicators
- Thermally stable
- 350 °C, 30 MPa

Acridine
β-Naphthol
β-Naphthoic Acid
Colorimetric pD Measurements

• Why β-Naphthol?
 Overlaps with the only known accurate buffer for D₂O at high temperatures

• pD Buffer System
 $\text{D}_2\text{PO}_4^- \rightleftharpoons \text{DPO}_4^{2-} + \text{D}^+$

• Targets for study:
 $\text{NapOD} \rightleftharpoons \text{NapO}^- + \text{D}^+$
 $\text{B(OD)}_3 + \text{D}_2\text{O} \rightleftharpoons \text{B(OD)}_4^- + \text{D}^+$
β-Naphthol Spectra in Phosphate pD Buffers

- Measurements in weak acid and base
 - Yield spectra of species NapOD and NapO⁻
- Buffer spectra
 - Yield equilibrium mixture of NapOD and NapO⁻ at known pD

\[
A_{\text{NapOD,buffer}} = f_1 A_{\text{NapOH,Acid}} + f_2 A_{\text{NapO-,Base}}
\]
Equilibrium Constants of β-Naphthol in a $D_2PO_4^-/DPO_4^{2-}$ Buffer

$\text{NapOD} \rightleftharpoons \text{NapO}^- + D^+$

$$A(\lambda) = (\varepsilon_{\text{NapOD}}(\lambda) b m_{\text{NapOD}}^* + \varepsilon_{\text{NapO}^-}(\lambda) b m_{\text{NapO}^-}^*) \rho_{\text{solution}}$$

$$Q_{\text{NapOD}} = \left(\frac{m_{\text{NapO}^-}}{m_{\text{NapOD}}}\right) m_{D^+}$$

$$m_{D^+} = Q_2 \left(\frac{m_{D_2PO_4}^-}{m_{DPO_4^{2-}}}\right)$$

$$K_{\beta-\text{Naphthol}} = \left(\frac{m_{\text{NapO}^-} m_{D^+}}{m_{\text{NapOD}}}\right) \left(\frac{\gamma_{\text{NapO}^-} \gamma_{D^+}}{\gamma_{\text{NapOD}}}\right) = \left(\frac{m_{\text{NapO}^-}}{m_{\text{NapOD}}}\right) \left(\frac{m_{D^+}}{m_{D_2PO_4}^-}\right)^2$$
Ionization Constants of β-Naphthol in D$_2$O and H$_2$O

- Obtained at different buffer ratios
 \[\text{NapOD} \rightleftharpoons \text{NapO}^- + \text{D}^+ \]
- Comparison with literature in H$_2$O
 - Xiang and Johnston (1994)
- Low temperature data from literature
 - Wehry and Rogers (1966)

Ionization Constants of Boric Acid in D$_2$O and H$_2$O

- Boric acid ionization reaction:
 \[\text{B(OD)$_3$} + \text{D}_2\text{O} \rightleftharpoons \text{B(OD)$_4^-$} + \text{D}^+ \]

- Measure pD of boric acid /borate buffers
 - \(\beta\)-Naphthol as colorimetric indicator

\[K_{B(OD)_3} = \frac{m_{B(OD)_4^-}}{m_{B(OD)_3}} \gamma_{\pm \left(m_{D^+}\right)} \]

- Low temperature data
 - Edwards et al. (1962); Gold and Lowe (1968)

Bulemela et al., *J. Solution Chem.* (In Press)
Temperature Dependence of ΔpK for $D_2PO_4^-$, β-Naphtol, and Boric Acid

- β-Naphtol & boric acid consistent with $D_2PO_4^-$
- ΔpK lower at $t > 150 \, ^{\circ}C$
- Relatively independent of temperature?
Temperature Dependence of ΔpK for $D_2PO_4^-$, β-Naphthol, Boric Acid and Acetic Acid

Trends

- ΔpK is lower above 150 °C
- Magnitude of ΔpK is:
 - $D_2PO_4^-$
 - Acetic acid $\approx \beta$-Naphthol
 - $B(OD)_3$
- Can $B(OH)_3$ be used as a model for hydrolysed transition metals?
Density Measurements

Solvation Models from Partial Molar Volumes to Predict Temperature & Pressure Effects

\[
\left(\frac{\partial \ln K}{\partial P} \right)_T = -\frac{\Delta V^o_R}{RT}
\]
Apparent Molar Volume of NaCl(aq) at 300 °C and 14 MPa

High Temperature Vibrating tube Densitometer
• Relative density
 • ± 0.00002 g cm⁻³
 • to 350 °C, 30 MPa
• Yields
 • Apparent molar volume \(V_\phi \) vs molality

\[V_\phi - A m_{aq}^{1/2} \]

\(m_{aq} \)

\(V_\phi - A m_{aq}^{1/2} \) vs molality
Towards a Predictive Model

Geochemical “Equation of State” for Aqueous Ions
Tanger and Helgeson (1988)

$$\bar{C}_p^o (ion) = a + \frac{b}{(T - 228)^2} + \Delta C_{p,Born}^o$$

$$\bar{V}^o (ion) = c + \frac{d}{T - 228} + \Delta V_{Born}^o$$

Does the Born term predict deuterium isotope effects from ~200 to 300 °C?

$$\Delta V_{2, D_2O}^o = V_{2, D_2O}^o \left\{ 1 - \left(\frac{\partial \varepsilon / \partial p}{\varepsilon_{H_2O}} \right)_{T,H_2O}^2 \right\} / \left\{ \left(\frac{\partial \varepsilon / \partial p}{\varepsilon_{D_2O}} \right)_{T,D_2O}^2 \right\}$$
Summary and Conclusions

• High precision flow instruments
 – Operate to 350 °C, 30 MPa
 – Measure differences between species in D₂O and H₂O
 – Complications from ion pairing above 300 °C

• Conductance
 – Measuring $pK_{D2O} - pK_{H2O}$ for key acids and bases

• UV-visible spectroscopy
 – Control pH with only known buffer system, DPO₄⁻ /D₂PO₄⁻
 – First thermally stable colorimetric pH indicator
 – Results for Boric Acid

• Apparent molar volumes
 – Focus on 250 to 350 °C range to define “best” theoretical model
 – NaOD, DCl and NaCl complete, LiOD in progress

• Predictive models and “equations of state”
 – Two models (Born + Corresponding States) successful
D$_2$O Project Team

• Dr. Liliana Trevani
• Dr. Diego Raffa
• Dr. Ephraim Bulemela
• Ms. Kristy Erikson (PhD student)
• Mr. Eric Balodis (Summer student)
• Ms. Sarah Moore (Summer student)

Funding

• NSERC
• Ontario Power Generation Ltd
• UNENE
Acknowledgments

UNENE

NSERC CRSGNG

ONTARIO POWER GENERATION

UNIVERSITY OF GUELPH

AECL EACLI